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Abstract

NMumerical simulation of propagation through atmospheric turbulence of an initially
~pherical wave is used to calculate irradiance variance o?. variance of logirradiance
. ;- and mean of logirradiance < In 7/ > for 13 values of lo/RF (i.e.. of turbulence
inner scale ly normalized by Fresnel scale Rr) and ten values of Rvtov variance
Tjeyeor - Which is the irradiance variance. including the inner-scale effect. predicted
by perturbation methods: lo/Rp was varied from 0 to 2.5 and a;‘}ytov from 0.06 to
5.0. The irradiance probability distribution function (PDF) and, hence, of, 012“1, and
< In/ > are shown to depend on onlv two dimensionless parameters, such as lo/Rp
and ... Thus. effects of the onset of strong scintillation on the three statistics are
characterized completely. Excellent agreement is obtained with previous simulations
that calculated . We find that o?. i1~ and < In7 > are larger than their weak-
scintillation asymptotes (namely. O Fryton- T fryto0+ and —0Fytov/ 2. Tespectively) for the
onset of strong scintillation for all lo/Rr. An exception is that for largest lo/RF, the
onset of strong scintillation causes oy, to decrease relative to its weak-scintillation

limit, U%utm,. We determine the efficacy of each of the three statistics for measurement



of lp, taking into account the relative difficulties of measuring each statistic. We find
that measuring o7 is most advantageous, although it is not the most sensitive to /g
of the three statistics. All three statistics and, hence. the PDF become insensitive
to lg for, roughly, 1 < 32 < 3 (where 82 is a?‘?ytov for lp = 0); this is a condition for
which retrieval of [y is problematic.
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1. Introduction

We describe the variance of irradiance o?, variance of logirradiance o ;. and mean of logirra-
diance < In 1 > for propagation through homogeneous atmospheric turbulence of an initially
sphencal wave, The propagation-path-averaged strength of scintillation is varied from weak
to ~strone seintillavion. and the turbulence inner scale is varied from zero to large values.
he results for our three statistics are of fundamental interest. as well as of iterest for
remote sensing of turbulence parameters using scintillation. In particular. we are motivated
by the need to extend the range of applicability of measuring turbulence inner scale using
~ctillation. Such measurements require simultaneous measurement of scintillation caused
by 1wo chistinet bands of spatial wave numbers in the refractive-index spectrum’. As recently
reviewed ! these methods include measuring variance of irradiance or logirradiance from two
different path lengths. 2™ different beam types.” different temporal-frequency passbands.®
the spectrum of angle of arrival for differing angles.”® phase-difference structure function or
covariance function at differing spacings.®”'® beam wander.'"*™'7 variance of beam centroid
separations for differing separations.!® covariance of irradiance or logirradiance at different
spacings.”™"7?! the spatial spectrum of logirradiance,22:23 spatial filtering of the irradiance
pattern.*! differing aperture sizes.25?% and differing radiation wavelengths.2”3! The band
at higher spatial wave numbers should be within the dissipation range of the spectrum of
refractive-index fluctuations. The band at lower spatial wave numbers should be in or near

the inertial-convective range. The ratio of statistics caused by these two wave-number bands



provides an estimate for the inner scale: then this inner scale and either statistic give the
refractive index structure parameter C'2.

One application of scintillation measurement of inner scale and C? using a horizontal
propagation path below, say. 10 m height is the determination of the fluxes of heat and
momentum between the surface and the atmosphere. These fluxes. along with the humidity
flux. are the basic interaction between the surface and the atmosphere. Hill! reviewed
the methods and the practice of scintillation measurements of surface fluxes. Extending
the range of measurements of inner scale and C? also extends the range of surface-flux
determination.

Here. we consider in detail a scintillometer for measuring inner scale and C? as described
by Oclis and Hill.?* The band of higher spatial wave numbers is obtained by using a diverged
laser beam to emulate a spherical wave and a small aperture to emulate a point receiver.
The band of lower spatial wave numbers is obtained by transmitting phase-incoherent ra-
diation that uniformly illuminates a large. circular transmitter aperture and by receiving
the seintillating radiation through a circular aperture of the same diameter. One version of
this mner-scale scintillometer uses logarithmic amplifiers to produce logirradiance variance
for both the laser and large-aperture chanuels. Another version uses linear amplifiers to
produce irradiance variance from both channels. For either type of large-aperture variance.
the theory by Frehlich and Ochs® gave the variance as a function of inner scale and C? (in
terms of dimensionless parameters). Using this theory. the variance from the large aperture
i used as part of the information needed for remote sensing of inner scale. The theory of
Frehlich and Ochs® includes both the effect of inner scale as well as the effect of strong scin-
tillation on the large-aperture variance. Their theory is thus more general than the theory
by Hill and Ochs® (which was previously used for retrieval of lp and C?) and reduces to the
theory in Ref. 25 in the limit of weak scintillation.

However. until recently. there has been no calculation of the variances of irradiance or lo-
girradiance for a spherical wave that includes the transition from weak to strong scintillation.

This calculation is needed to extend the range of operation of the inner-scale scintillometer
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and to more precisely obtain inner scale. Indeed. the variance of the laser radiation is sig-
nificantly more sensitive to effects of strong scintillation than is the large-aperture variance:
this is well known from the theory of aperture averaging.3?~34

We use numerical simulation to calculate our three statistics. Simulations of wave prop-
agation through three-dimensional random media with narrow angular scattering (parabolic
equation approximation) have been used in various investigations.3™#! A simulation consists
of approximating a three-dimensional random medium as a collection of equally spaced. two-
dimensional. random phase screens that are transverse to the direction of wave propagation.
The wave is propagated through the collection of phase screens using Fresnel diffraction the-
ory i Fourier transform representation. This is efficiently performed with a two-dimensional
fast Fourier transform. These simulations are demanding of computational resources. and
careful chowee of numerical parameters is essential for valid results. Quantitative results for
the optimal choice of the mesh size and screen separation for simulation of wave propa-
cation through a three-dimensional random medium have been determined for plane- and
~pherical-wave geometry. We use the spherical-wave algorithm described by Coles ¢f a2

The assumptions used to obtain field-moment equations are narrow-angle scattering
thence use of the parabolic wave equation). the Markov approximation. and the approxi-
mation of Gaussian refractive index. The refractive-index spectrum must be specified along
the propagation path. The same assumptions are used in simulation of propagation. Both
simmulation and tield-moment methods have the same range of validity. As one of us had
noted previously.* the quantitative agreement of simulations with scintillation experiments
validates both simulation as well as fourth-order field-moment methods.

The validity of the Markov approximation was first imvestigated by assuming a Gaus-
sian random process for the refractive index fluctuations with a correlation distance that
1s much smaller than the length of the propagation path (the Markov property).445 These
assumptions are not as restrictive as thev appear. Validity of moment equations has been
established on the basis of weaker approximations.46:47 Zavorotny®® obtained conditions for

the validity of field-moment equations of all orders by considering the irradiance moments

4



of all orders for both very weak and very strong scintillation. He determined that the wave-
length must be much smaller than both the Fresnel scale and the wave coherence length and
that the propagation path length must be very much greater than both the Fresnel scale and

size of the scattering disk. These conditions are easily satisfied for atmospheric propagation.

2. Propagation Parameterization

We define the following parameters: X is the wavelength of the radiation: L is the length
of the propagation path: : is the position along the path from = = 0 at the transmitter
to = = [ at the receiver: Rp = \/m 1s the Fresnel distance; C'? is the refractive-index
~trocture parameter: and g is the inner scale of turbulence. We use Obukhov's* definition
of mmuer scale: this definition is also given in Tatarskii’s®® Sec. 13. as well as given by Hill
and Chifford.” Briefly. the inner scale is the spacing at which the asvmptotic formula for
theanertial-convective range of the refractive-index structure function equals its asvmptotic
dissipation-range formula.

We denote irradiance normalized by its mean value by I and use angle brackets to denote

an ensemble average. Thus, < [ >= 1. The three statistics we study are

irradiance variance. o] =< (I —1)* > | (la)
mean of logirradiance . <InJ >, (1b)
variance of logirradiance . of , =< (In/— < InJ >)2 > . (le)

Note that {la and 1b) require a measurement of mean irradiance in order to determine the
normalized irradiance /. However. (1¢) does not require measurement of mean irradiance
because. if S is any scaling factor. then In(S1)— <In(SI)>=1nl- <Inl >.

We call the irradiance variance in the weak-scintillation limit the Rytov variance and

denote it by o}, .. In this limit of very weak scintillation. we have®®
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For isotropic turbulence. the refractive-index spectrum ®.(x) can be written as the
product of the inertial-range formula and a dimensionless function f(klp). where « is the

spatial wave number, i.e.,

®.(x) = 0.033C2x~113f(kly) . (3)

The dimensionless function f(xly) describes the spectral bump and dissipation range at
high wave numbers. and f(0) = 1. f(xly) depends only on the dimensionless variable N
A theoretical model for @, (). and therefore for f(xly), is given by Hill,2 who showed that
the model fits data from precision thermometry in atmospheric turbulence to within the
accuracy of the data. The function f(xly) from this model is shown in figures in Refs. 35.
41512530, 31 and need not be shown here.

Geophysical flows have variability (sometimes called global intermittency®?) on spatial
scales that greatly exceed the propagation path length. as well as on scales commensurate
with the path length. The corresponding temporal scales greatly exceed those caused by
the wind advecting those refractive-index fluctuations that are in the range of spatial scales
producing scintillation. From a propagation point of view. such variability means that 2
and I, or equivalently. the dissipation rates of energy and of refractive-index variance. must
be treated as locally stationary with intermittent values.

IO and Frehlich?! presented equivalent models of the effects of global intermittency of
(" and L, on the refractive-index spectrum. They showed that global intermittency causes
variability in the shape of fixly). Such variability has been observed?!. The effects of
elobal intermittency have been ohserved in short-path measurements of irradiance PDF®*
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and irradiance covariance Intermittency effects on propagation are further discussed in

Refs. 56-39. We assume that the intermittency in C'? and I, is statlonary in time and
homogeneous along the propagation path and that the average spectrum is given by (3)
with f(wxly) as given in Ref. 52. If the variability of C? and /; due to global intermittency

produces significant deviations from: the assumed unjversal function f(xly), then estimates

of inner scale will have a bias.



Atmospheric scintillation experiments have shown that Eq. (3) with f(xlo) as given in
Ref. 52 must be used to quantitatively predict weak scintillation.2!2526.2831.60 These exper-
imental results are reviewed in Ref. 1. Recently. experiment®® and numerical simulation?®
have shown that this model for ®,(x) is necessary to quantitatively predict strong scintilla-
tion from atmospheric propagation. Flatté et al3® noted that the agreement of the irradiance
variance obtained from numerical simulations with that obtained by experiment. as well as
with other theoretical calculations, gives confidence in the use of numerical simulation for
quantitative prediction of atmospheric scintillation.

Formulas for af{ym n terms of @,(x) for a spherical wave propagating through isotropic
turbulence that is homogeneous along the propagation path are given. for instance. by

cquations {Tx) and (T26) of Lawrence and Strohbehn.®! Let z = x Rr be the dimensionless

wave number.and let v = =/ L be the dimensionless propagation path position. Substituting
tAramta 1261 of Lawrence and Strohbehn®! and changing integration variables gives

O-lz‘fywr = 35&2(10/}?}7) (4)
\'.'iH'I('

35 = 0.49647/6 [ 11/5¢2 (5)
and

1 o ,
ai(ly/ Rp) = 10.5/ du d:r.r_s/df(.rlo/Rp)sin2[12u(1 —u)/2?] (6)
0 0

The quantity 37 in (3) is the weak-scintillation variance for an inertial range extending over
all wave numbers (i.e.. for Iy = 0). Thus. 5%(0) = 1. The dimensionless function &%(lo/RF),
ax defined 1n Eq. (6). is manifestly a function of only its one dimensionless argument. Thus,
a*(ly/ Ri) gives the effect of the spectral bump and dissipation range of ®,.(x): in other
words. it gives the inner-scale effect. Based on the form of f(&ly) discussed previously. Fig.
3 in Ref. 30 shows 6%(lo/Rr) as a function of its sole dimensionless argument; Fig. 4 in Ref.
51 and Iig. 2 in Ref. 31 show &% as a function of \/AL/ly = V27 (lo/ Rp)~1.

The dimensionless quantities a}){ym and lo/ Rr are used to present our results for the three

statistics of interest. We also present results in terms of the dimensionless quantities 42 and
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lo/ Rr. We next show that only two dimensionless parameters are needed to determine the
irradiance and logirradiance statistics for our case.

We consider the case of a spherical wave propagating in homogeneous atmospheric turbu-
lence having an outer scale much larger than the spatial sizes of refractive-index fluctuations
that cause irradiance scintillations. In this case, the turbulence imparts to the propagation
statistics of interest a dependence on the parameters C? and l,. The statistics also depend
on k and L. However, the statistics depend on only two dimensionless parameters.

For plane waves in a homogeneous random medium having a Kolmogorov power-law
refractive-index spectrum (i.e., o = 0), Gracheva et al% obtained that the probability dis-
tribution function (PDF) of the irradiance depends on only one parameter. This parameter

1%% obtained this result by expressing the field-moment

can be taken to be 2. Gracheva et a
cquations (ef.. Ref. 50) of all orders in terms of dimensionless independent variables. This
iethod reveals the dependence of the field moments on the minimum number of dimension-
less parameters and dimensionless independent variables. Single-point moments of all orders
of thearradiance are special cases of the field moments and are thereby shown to depend on
a mimmum number of dimensionless parameters. For the specific case of the fourth-order
moment of the field, Tatarskii*®. Gurvich and Tatarskii®®, and Gurvich et al.®! show that a
nonzero inner scale results in one additional dimensionless parameter to be relevant. This
parameter may be taken to be {4/ 1.

We extend the method of Gracheva ¢f al™® to spherical waves by use of a spherical
coordinate system and, for that matter. to cylindrical waves using a cylindrical coordinate
svstem. Moreover, as noted in Gracheva «f al.*? the case of beamed waves requires as many
more dimensionless parameters as there are parameters describing the initial beam, such as
initial beam width and focal length. In addition, we generalize the method of Ref. 62 to
refractive-index spectra that have more parameters, such as inner and outer scales or a scale
demarking a transition between two power-law regimes (this latter case is studied in Refs.
64-66). The result is that the field moments and, hence, the single-point irradiance moments

and, hence, irradiance PDF depend on one additional dimensionless parameter for each such



parameter of the refractive-index spectrum. For our case, we take the outer scale to be so
large that irradiance statistics have negligible dependence on outer scale. Therefore, we
obtain that the irradiance PDF depends on only two dimensionless parameters: one can be
taken to be 03,,,,, and the other can be o/ Rr. Thus, any irradiance statistic obtainable from
the irradiance PDF can be taken to depend only on these two dimensionless parameters:
in our study, this applies to ¢%, of;, and < InI >. As stated in the introduction, the
demonstrated dependence on only a minimum number of dimensionless parameters depends
on the validity of the field-moment equations.

In addition. for the case of inhomogeneous turbulence, we can also obviously allow the
parameters of turbulence [e.g., C2, Iy, and even the functional form of f(xlp)] to vary slowly
along the propagation path. To do so. the scattering function within the equation for a field
moment of arbitrary order is taken to be a functional of the distribution of the parameters

in question [e.g.. C2

lo. f(xlp)] rendered dimensionless by scaling with their propagation-
path-averaged values and expressed in terms of the dimensionless propagation position = /L.
Then arbitrary field moments. and hence the irradiance PDF. are functionals of the dimen-
sionless path distribution of the turbulence parameters. Tatarskii*! derived an equation of
the Fokker-Planck type for the characteristic functional of the field. From this equation. one
can generate the field-moment equations of all orders. It is clear that the demonstration
of dependence of field statistics on a minimum number of dimensionless parameters and
dimensionless path distributions of turbulence parameters can be obtained by introducing

scaled variables and a dimensionless scattering function into Tatarskii’s equation for the

characteristic functional of the field.

3. Basic Results

Previous simulations of spherical-wave propagation in three-dimensional random media used
a Cartesian coordinate system with a small Gaussian source distribution®+3? or a small cir-

cular disk.*' Those simulations produce an average irradiance that varies with location on



the observation plane, as well as numerical artifacts near the edge of the simulation. An
alternative method is to compute the random field using a spherical coordinate system.*?
This method produces a constant average irradiance in the observation plane with no nu-
merical artifacts.*? Coles et al*? obtained error scaling using simulations with varying grid
sizes and screen. The spherical coordinate system is numerically much more efficient than
the Cartesian coordinate system.

The results presented here use 512x512 grid points per phase screen with 20 screens along
the propagation path per realization; 50 realizations were averaged to produce our statistics
for each ly/Rr and o},,,,. The Fresnel distance was 10 grid points. The numerical errors
for the rormalized irradiance variance were less than 2% for all cases and are not plotted on
our fieures hecause they would be hardly noticeable.

Freure fa shows af as a function of Rytov variance Ohytov: @ straight line indicates o? =
mii. . Fhe onset of strong scintillation causes o7 to exceed Ohyiov- and the greater ly/ Ry
i~ the more af exceeds of,,.. Of course. it is well known that o? attains a maximum
a~ @i . increases further and that af approaches unity as Ohyion tends to infinity 826771
A~ shown in Fig. 1b. the maximum occurs bevond the range of our abscissa in Fig. la.
Tur™ showed a case. very different from ours. for which o} exceeds af?ytov at the onset of
strong scintillation. Tur solved the fourth-moment equation for a Gaussian refractive-index
spectrum in two-dimensional space,

The legend for lo/ Rp in Fig. la is in the order of the curves from top to bottom. We
see from the curves and legend that as ly/ Ry increases from zero, the value of o} at first
decreases (for fixed o,,,) until ly/ By = 0.12. and then o increases (for fixed TRyton) @S
ln/ Ry increases further. This latter effect is attributable to the bump in the refractive-index
spectrum and the same effect in the behavior of the heuristic theory of logamplitude variance
(cf.. Fig. 8 in Ref. 73) is caused by the bump in the refractive-index spectrum. In fact, the
motivation for graphing o7 versus Thytor 1 the orderly progression of the curves that was

anticipated on the basis of the heuristic theory.
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Figure la shows that % approaches O Bytoy S Ohytor DeCOmes small. as it should. For a
fixed value of o}, less than about unity, Fig. 1a shows that o? deviates more from OB yton
for larger lo/ Rr. This is not necessarily the case for fixed 52, as opposed to fixed TRytor (L.

Ref. 41).

Figure 1b shows o7 from our simulations compared with ¢ from the simulations by Flatté
et al*® Their simulations extend to greater values of Ohyon (and BZ) than do ours. Their
simulations have greater statistical uncertainty than do ours; this can be seen from the error
bars shown by Flatté et al>® Considering their statistical uncertainty. the agreement between
the two simulations. as shown in Fig. 1b, is excellent. Figure 1b shows the maximum of o3
and the subsequent decrease of o? with further increase of T hyton-

Fieure 2 shows of ; versus o},,,,: a straight line indicates Ofh1 = Ohyor- There are fewer
curves in Figo 2 as compared with Fig. 1b simply to reduce the crowding of the curves
ke We see that if lo/Rp < 1.3 then the onset of strong scintillation causes ol to
mitialiy exceed o, whereas if [o/ Rp > 1.3. then ot is less than ORytor- For lo/Rp = 1.3,
T i 1> nearly equal to 0., over the greatest range of Ohytor- Of course. as o3, — .
then 7 —= 1.64. Beginning with lo/Rr = 0 on the right edge of Fig. 2. we see that of |
minially decreases slightly as lo/ Rr increases (until ly/Rp = 0.12); thereafter. o ; increases
with further increases of lo/Rg. The initial decrease of of,; at the right edge of Fig. 2 1s
caused by the bump in the refractive-index spectrum. Note that the curve for lo/Rp = 2.5
hias not vet crossed the curve for o/ Rr = 1.3 at our largest a}"?ym. Of course. o, ; approaches
Tito. i Fig. 2 as of . becomes small. The behavior of ot ; in Fig. 2 differs from that
predicted by the heuristic theory originated by Clifford ef «l™ and later refined.™™ Tle
heuristic theory curves shown in Fig. 8 of Ref. 73 all lie below the straight line (i.e.. the
heunstic theory gives of ; < Thyior Tor all lo/ RF). and those curves progressively approach
the straight line as I/ Rp increases. In the Appendix, we quantitatively compare the results
of our simulations with the heuristic theory.

Figure 3 shows < In/ > versus Thyor- The solid curve in Fig. 3 shows the weak-
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scintillation limit < InJ > = —Ch,10v/2> and the curves all approach this limit as Oyt
decreases. The onset of strong scintillation causes < InJ > to be larger than the weak-
scintillation limit. From top to bottom, the curves in Fig. 3 are in the same order as the
values of lo/Rr in the legend. For smaller ly/Rr in Fig. 3. one sees that < In J > increases
more with increasing c},,,, with the exception of the reverse trend for curves lo/ R = 0.0
and 0.12. This reverse trend is caused by the bump in the refractive-index spectrum. just
as for our other statistics o} and o ;. As 0}, — co. <Inl > — -y ~ -0.577. where ~ is
Euler’s constant.”™ This is derived from the fact that the PDF of irradiance is exponential
i this imit.

We have compared our simulations with available measurements of of,; and o2. Iu all
cases. the comparisons reveal limitations in the method of measuring C? and. in most cases,
the imitation caused by the absence of measurement of inner scale. Ochs™ obtained data
tor @i, and obtained C7 from fine-wire thermometry: he also measured wind speed. Hill and
Clifford™ " used the wind speed to determine inner scale and thereby compared the heuristic
theory with the data by Ochs.” We have performed a similar comparison with the result that
our values of o, | are somewhat in better agreement with the data by Ochs than is the heuris-
tic theory, However. Ochs™ obtained inconsistent values of C'? from fine-wire thermometers
used simultancously at different spacings. The resulting uncertainty in the value of (. as
well as the scatter in his plotted vilues. prevents a useful quantitative comparison with our
simulations. Parry and Pusey™ and Parrv™ measured o} on a variety of propagation path
lengths. They simultaneously obtained 2 from short-path laser-irradiance variance assum-
g that [y, = 0. Their assumption that {y = 0 is iikely to produce an underestimate of C'? (cf.,
Ref. 51). but it could also produce an overestimate of (2.5 Our comparison with their data
shows an underestimate of C? of the expected magnitude. Phillips and Andrews® used the
same method of determining C? as did Refs. 78 and 79, and their data are Jess explicable,
perhaps because of the mirage effect discussed in Ref. 81. Coles and Frehlich® obtajned five
values of o7 that are within the range of our simulations. They obtained C? from focal-spot

spread using a telescope and photographic film. Their four cases of weakest scintillation, for
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which o7 < 1.0, were obtained late at night during periods of very little wind. Such periods
are characterized by intermittent bursts of turbulence separated by laminar flow containing
strong temperature gradients that cause extreme beam wander. Indeed, such beam wander
was observed. and it had the effect of causing overestimation of C2. This explains why their
four cases of weakest scintillation (shown in Fig. 12 of Ref. 8) correspond to C? values that
are substantially too large for agreement with either weak-scintillation theory or our simuija-
tions. This illustrates the problem of attempting to measure atmospheric weak scintillation
using long and low propagation paths; shorter and/or higher paths are needed. The datum
of Coles and Frehlich® for which o? = 3.3 was obtained in more homogeneous turbulence.
This datum is in very good agreement with our simulations provided that the inner scale
was less than 1 em. which was very likelv the case.

Consortini et al* used an optical-scintillation crosswind instrument to obtain C? and
crosswisd This instrument is not optimized to determine (2 and can overestimate 2.
althoneds this imstrument has negligible inner-scale effect. As discussed by Consortini ef
w! U thee dientization rate used for their €2 signal causes scatter in their measured 2 Our
conpatison with their data shows both such overestimation and scatter in their measured
(' Flanté o al® compared simulation with the data in Ref. 43 for cases of large 3.
Their comparison is insensitive to errors in 2 because o? varies slowly with 3. and thereby
with (77 for cases of large 3. Also. the experiment in Ref. 43 used relatively long and
low propagation paths in order to measure o} for large 3. They show that their observed
cases of smaller .4y, with which we must compare. correspond to temporally nonstationary
data. We conclude that the precision and detail with which numerical simulation predicts
radiance statistics place very stringent demands on experimental measurements of C'? that
have not vet been attained (with the exception of one datum in Ref. 8) but that are within

technological limitations.
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4. Implications for Inner-Scale Scintillometry

Next we consider the efficacy of each of our three statistics for purposes of retrieval of a value
of inner scale for various values of /;/Rr and strength of scintillation. To do so. we must
separate the dependence on strength of scintillation from the dependence on ly/Rp. We
choose 3 as our strength-of-scintillation parameter because B¢ o C2. By is independent of
lo/Rr. and &y is a dimensionless parameter that provides applicability of the results to anv
experiment independent of the other dimensional parameters (e.g-. k. L. and C?). Graphing
scintillation statistics versus 3o rather than 82 produces a clearer display for small 3,.

The method of obtaining inner scale from scintillometers of the type devised by Ochs
and Hill*" is to divide the laser-propagation statistic (e.g., ol or oi. etc.) by the variance
froni & large-aperture scintillation measurement. The purpose of this division is to remove
the proportionality to €} of the laser-propagation statistic such that the resulting ratio
depends onlv on ly/ R (in the weak-scintillation limit). The large-aperture diameter D is
chosen to be much larger than [, such that the large-aperture variance has only a slight
dependence on o/ D (cf.. Ref. 25). Ignoring this slight lo-dependence, the large-aperture
varanee is proportional to 33: the proportionality constant is dimensionless and does not
affect the umversal applicability of our results. For our purposes. 1t suffices to present our
statisties divided by 33 this removes. in a universal and dimensionless manner. a factor of
C'F from our statistics. Of course. the resulting ratios. i.e.. of/32, o2 /32, and < In ] >/ 3.
have increasing dependence on 3¢ (i.e.. on C?) as scintillation strength increases bevond the
weak scintillation case. These ratios are close approximations to the ratios of laser-radiation
statistics to large-aperture variance obtainable from the inner-scale scintillometer.

In Figs. a.b.c. the respective ratios ¢2/.32. omr/33. and =2 < In] > /B¢ are shown
versus .3 for the values of I/ Rr given in the legends. Because our data are calculated
at the same values of Ohyon for all values of ly/Rr. the curves in Figs. 4a.b,c, begin and
end at various Jo. The effect of increasing strength of scintillation on the three ratios is

seen as Jy increases along the abscissas of Figs. 4a,b,c. The ratios decrease rapidly for
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the larger values of fp. and in Figs. 4a and 4b there is typically a slow increase of the
ratios prior to this rapid decrease as {3, increases. From top to bottom. the legends give the
values of lo/RF corresponding to the curves' top-to-bottom position along the left side of
Figs. 4a.b.c. The short-dashed curves for lo/Rr = 0.0 approach unity as 3, becomes small.
Beginning with these curves for lp/Rr = 0.0 and proceeding to larger lo/Rp. we see that
the curves at first rise on the left sides of Figs. 4a.,b,c. with curves for lo/RF = 0.4 attaining
the greatest values, and curves for vet larger ly/ Rr thereafter decreasing with Increasing
rapidity as lo/ Rr decreases. For weak scintillation, this same type of progression is shown
as a function of ly/Rr in Refs. 1, 26. 82. 51. 28. 30, 31. 60. From Figs. 4a.b.c. we see that
for the smallest 3y (i.e.. weak scintillation limit). the curves change most rapidly for larger
lo/ Ry which implies greater sensitivity for retrieval of ly. and we see that for lo/Rr less
than ahbout 0.80. we can obtain two values of Iy for a given value of any of the three ratjos.
Thisas well known??? because this behavior of the curves in Fig. 4b gives the usual method
for retrieval of ly using scintillometers similar to that devised by Ochs and Hill.?¢

For 3, > 1. Figs. da.b.c show manv curves overlapping. This means that a measurement
of any of the three ratios is insensitive to ly/ Rr and that multiple values of Iy can be retrieved.
In the retrieval of 7 and ly. the measured variance from the large-aperture scintillometer
gives an approximate value of .J, and the measured ratio then gives one or more possible
values of ly/Rp: an jteration gives the final values of C'? and ly. Since so many curves are
overlapping at 4, > 1. one obtains inaccurate values of /; and possibly more than two values.
Hill ¢t al® showed this effect in their tables of errors of retrieved values of C? and [, for
gi\'CI] measurement errors.

For 3y > 3. Fig. 6 of Flatté et al® shows that 62/42 will once again have an orderly
behavior as ly/ Rr varies. Thus. as discussed by Hill,! one can, in principle, obtain {, from
measurements of o7 for 3, > 3.

The range 1 < 3, < 3 is problematic. The three statistics. of, 0t ;. and < InI >, obtain
their values from different portions of the PDF of irradiance. That all three ratios in Figs.

da.b.c are insensitive to changes in lo/RF for 1 < By < 3 shows that the PDF of irradiance
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is insensitive to changes in lo/Rp. Thus, there is probably no irradiance statistic that will
be useful for retrieval of [y in the range 1 < By < 3.

Comparing Figs. 4a,b,c for 8y < 1, we see that as 3y increases, the curves for ol /82
maintain the greatest and most regular spacing. Were it not for other considerations, this
suggests that measuring of, ; is superior to measuring 67 or < In I > for purposes of retrieving
inner scale. However, we must consider signal-to-noise ratio, dynamic range, etc.

Measuring irradiance using a linear amplifier has the advantage that noise and back-
ground signal can be subtracted before computing o7, provided that one designs the means
of stopping the laser radiation such that noise plus background are measured. To produce
the required dynamic range for a linear detector, two channels are needed: one with a gain
of approximately 100. which would be suitable for ¢? < 1, and another with no gain for

~; -1 The rms additive noise of the detectors should be less than 10% of the average

83—85

~ienal For large values of o7, amplifier saturation and insufficient number of indepen-

™ must be considered. Ochs and Fritz® gave a measurement method for

dent samples™
overcoming the latter problem without causing great increases of averaging times, although
this method is cumbersome.

Fewer independent samples are needed to measure of,; and < In/ >, and logarithmic
amplifiers having sufficient dynamic range are available. However. subtraction of noise and
background is not possible. and o, and < In1 > arc more sensitive to noise than is o?.
The effect of noise during a deep fade of irradiance can be a negative voltage input to the
logamplifier: this produces a very erroneous output. As turbulence strength increases, the
probability of occurrence of deep fades increases rapidly. In fact, this probability increases
far more rapidly than is estimated on the basis of the lognormal PDF of irradiance. This
is because Flatté ef al®® have shown for the case of plane waves that for B2 > 0.5 the
probability of deep irradiance fades is much closer to an exponential PDF than a lognormal
PDF and that the probability of deep fades of irradiance substantially exceeds the lognormal

PDF even for 3¢ as small as 0.01. We presume that similar results hold for initially spherical

waves. Since < In[ > is even more sensitive to deep fades than is o2 ; and since Figs. 4b
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and 4c show no significant advantage of < In > over of,; for retrieval of inner scale. one
prefers o, to < Inl > for obtaining inner scale.

For the case 47 > 0.5, the PDF's calculated by Flatté et al.3¢ show a remarkable regularity
for deep fades. In effect, for 32 > 0.5, the PDF for deep fades is approximatelyv determined
by only two parameters: of ; and < InJ >. If this result also holds for initially spherical
waves. then one could design a data acquisition program to truncate the digitization for
signals bevond the range of the loga~ithmic amplifier to obtain initial estimates of < InJ >
and afl ;. These estimates and knowledge of the PDF at deep fades could be used to correct
o, for the truncation. However, much work remains to establish the PDF with adequate
accuracy. At present. it 1s safest to retrieve inner scale from o} using noise-and-background
subtraction and variable amplifier gains.

Some motivations for studving the statistics 0. o2, ;. and < InJ > are that these quan-
tties have heen predicted for weak scintillation on the basis of the method of smooth per-
trbations. and that of can. in principle. be determined for all levels of scintillation from
the fonrth-moment equations. and that the heuristic theory was a possible candidate for
predictime o for all levels of scintillation. However. numerical simulation can determine
the PDE of [ and. hence. determine the average of anv function of I; U?. Uﬁ]l, and <lInl >
arc only three examples. An instrument designer can choose a measured quantity taking
mto account the instrument’s hardware and software limitations. One example of such a
designer quantity is the PDF truncated at irradiances beyond which the measurement is

faulty.

5. Conclusion

We have performed numerical simulation of a diverged wave propagating through homo-
geneous atmospheric turbulence to investigate the efficacy of the statistics o?, o, and
< In/ > for measuring inner scale. We show that the onset of strong scintillation causes

these statistics to exceed the predictions of weak-scintillation theory, with the exception of

17



of,; for cases of very large inner scales. We find that o? is the most advantageous statistic
given present limitations, but that further study might make other quantities more useful.

Measuring inner scale using scintillation is problematic for 1 < B2 < 3.
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FIGURES

Fig. la. o7 is shown versus Ohytop- From top to bottom. the order of the curves
corresponds to the values of lp/Rr from top to bottom in the legend. The straight solid line

shows 0} = 0%,

Fig. 1b. Similar to Fig. la. but showing larger values of Thytor: The circles are values
from Fig. la. The lines connect points calculated by Flatté et al.3® From top to bottom.

the circles and lines are in the same order as the values of Io/Rr in the legend.

Fia. 20 o, versus of,,,.. From top to bottom along the far right edge, the order of the
curves i the same as the order of the values of I,/ Rr in the legend. The straight solid line

' il
<hows Tit = Ohyton

I1e. 3. The miean of logirradiance is shown versus U%ytor. From top to bottom. the order
ol the curves is the same as the order of the values of I/ R in the legend. The solid curve
shows < In/ >= ——O’;{ytm,/:z.

Fie. da. Scaled irradiance variance versus 3. See caption of Fig. 4c.

=
12

g. 4h. Scaled logirradiance variance versus 3. See caption of Fig. 4c.

Fig. Je. Scaled mean of logirradiance versus 4,. Here. as in Figs. 4a and b, the legend
gives the values of ly/Rp from top to bottom that correspond to the curves from top to

bottom on the left side of the figure.



Fig. 5. Ratio of the variance of log irradiance using the heuristic theory to the variance
of log irradiance from simulations. The legend gives the values of lo/ Rr from top to bottom

that correspond to the curves from top to bottom at o3, = 1.
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Appendix A: Comparison with Heuristic Theory

With regard to Fig. 2, we noted that of ; differs from the prediction of the heuristic theory
originated by Clifford et al.™ and refined by Hill and Clifford.”™" We can obtain op; from
the heuristic theory using interpolation on the tabulated values given in Ref. 73. In Fig. 5.
we show the ratio of of ; from the heuristic theory to oi from our simulation. Figure 5
shows that the heuristic theory has significant error that depends on lo/Rr. For logirradiance
variance. the réfined heuristic theory™ ™ has correct asymptotic limits for O hyton — OC. as
well as for oy, — 0: only the latter limit is evident in Fig. 5. Frehlich e/ a7 showed
that the heuristic theory predicts incorrect covariance of logirradiance in the limit TRutor
— . although the variance of logirradiance is correct for Thytor — 00. Our unpublished

comparisons of covariance of logirradiance measured by Ochs and Fritz® with those predicted

by the hennstice theory produced poor agreement.

We conclude that the heuristic theory should not be used to calculate C? and Iy from
~cmtiliation measurements. In fact. using of,; ~ U}’{y,Ol, 1s more accurate than the heuristic
theorvo with the exception of the following computed cases: Ohytor 2 D 5 Ohyor = 3 and

lv By = 0.5 and ly/Rp = 2.5.
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Figure4b Hill & Frehlich
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Figure4¢ Hill & Frehlich
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